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Abstract – This paper proposes a lead method and a 
processing means for monitoring the 12-lead 
electrocardiogram (ECG) with four standard leads. 
Leads I, II of the M-L leads and leads V1, V6 of the chest 
leads are used to record the ECG signals. The ECG 
waveforms of leads V2 through V5 are derived from the 
input signals using the least squares method based on the 
Frank torso model. This method makes it possible to 
monitor the 12-lead ECG during ambulatory and 
long-term bedside monitoring. Examples recorded in the 
hospital environment show that the derived ECG 
waveforms can reproduce main features of the original 
signals, including the ST segment changes. The 
advantages of this method are discussed with compared 
to Dower’s EASI ECG.  
Keywords – electrocardiogram, ECG, monitoring, lead, 
heart, model, cardiology 
 

1. INTRODUCTION 
 

Myocardial ischemia and infarction are main targets in 
clinical monitoring. For correct diagnosis of these kinds 
cardiac disease, the 12-lead ECG is the standard. However, 
most current cardiac monitors do not provide the 12-lead 
ECG capacity because of many difficulties. Recording the 
12-lead ECG needs ten electrodes; among these four are 
placed on the extremities of the patient. In clinical practice, 
mounting and maintaining such ten electrodes to record the 
12-lead ECG are almost impractical for ambulatory 
monitoring. It is also very difficult to do this for long-term 
bedside monitoring, because the electrode amount and 
configuration severely restrict the mobility of the patient. 
Technically, most monitors use telemetry and at least eight 
channels of signal are necessary to be transmitted for the 
12-lead ECG. This is not only expensive in cost, but also 
sometimes impossible because of the restriction of capacity 
in telecommunication. 

To meet the need of monitoring 12-lead ECG, some 
recent studies have used directed 12-lead ECG with 
so-called EASI lead system [1]. The EASI lead system 
includes five electrodes: electrode E on the lower sternum, 
electrode A on the left axilla, electrode S on the upper 
sternum, electrode I on the right axilla, and an additional 
grounding electrode. The potential differences of A-I, E-S 
and A-S are recorded and the 12-lead ECG is calculated 
with coefficients developed by Dower [1]. Although the 

EASI 12-lead ECG has been evaluated by many clinical 
studies [2-4], there are some difficulties for it to be widely 
accepted by the clinical practice. An inherent limitation is 
due to the fact that the EASI 12-lead ECG is a calculated 
electrocardiogram, not directly recorded one. That means the 
EASI ECG only provides indirect, or secondary information. 
In clinical practice, most physicians generally do not trust 
secondary information for diagnosis. In addition, relevant 
laws in most counties prohibit using such estimated 
information for diagnostic behaviors. 

In this paper, we propose an alternative method to 
monitoring 12-lead ECG from reduced number of electrodes. 
The idea arises from the fact that there is information 
redundancy in the standard 12-lead ECG. In most ECG 
machines, signals of eight leads (I, II, V1 through V6) are 
recorded. These signals are not completely independent. If a 
fixed dipole model is used to interpret the heart field, there 
are only three independent variables, so that it is possible to 
record ECG signals with part of the standard leads and 
derive ECG for other leads. In this way, the 12-lead ECG 
gives raw signals for the recording leads as main 
information and gives secondary information for other leads 
as reference in diagnosis. In the following sections, method 
and results are presented. 
 

2. METHODS 
 
2.1 The Electrode Configuration 

 
The electrode placement proposed in this study is shown 

in Fig. 1. The electrode positions of RA, LA, and LL are 
those used in exercise ECG proposed by Mason and Likor 
[5]. From these electrodes, ECGs of lead I, II are recorded 
and ECGs of lead III, aVR, aVL, and aVF are automatically 
obtained. Using the M-L limb leads is extremely important 
for ambulatory monitoring, because it avoids the 
interference from motion and reduces much disturbance of 
baseline and muscle noise. The electrodes of RA, LA, and 
LL also determine the Wilson terminal, based on which 
ECGs of leads V1 and V6 are recorded.  

In addition to the above-mentioned five electrodes, a sixth 
electrode, RL, is used for grounding. This electrode 
configuration is aimed at two goals. First, it is sufficiently 
convenient and relatively comfortable for ambulatory or 
long-term bedside monitoring. Second, it provides as more 
information as possible in three spatial dimensions for 
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deriving ECGs in leads V2 through V5.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The electrode placement 
 
2.2 The lead vectors and Frank image surface 

 
According to the fixed dipole model of the heart, the 

potential on a surface point can be described by 

 
where L and H are column vectors with 3 elements, called 
lead vector and heart vector, respectively. The heart vector is 
the equivalent dipole source of the heart, which varies with 
time. The lead vector remains constant for a human subject, 
because the volume conductor of the torso is considered 
passive. Frank measured the values of the lead vector on the 
body surface with a typical human torso model, called image 
surface [6]. 

In our study, the Frank image surface is input into a 
computer with a digital scanner and the lead vectors for the 
modified leads I, II, and leads V1 thought V6 are precisely 
measured in terms of image processing software. Fig. 2 
shows these leads positions on the image surface (the 
horizontal view). 

Fig. 2. The lead vector in the horizontal projection 
based on the Frank image surface 

 
2.3. The algorithm to derive 12-lead ECG 
 

Using the measured signals and the lead vectors of leads I, 
II, V1, and V6, the heart vector at a moment can be obtained 
by solving equation (1) with the least squares method that 
gives 

 
Then, with H and values of the lead vectors of V2 through 

V5, values of V2 through V5 are derived using equation (1) 
again. 

 
3. EXPERIMENTS AND RESULTS 

 
In order to directly compare the derived ECG with the 

original signals, clinical ECG data were recorded in the 
hospital environment using the M-L electrode placement. 
The ECG data were recorded in to the memory card within 
an electrocardiograph (Nihon Kohden ECG9422). The data 
were then input into a computer and processed offline. A 
program based the above described algorithm calculated the 
values of V2 through V5 from leads I, II, V5, and V6. The 
derived ECG waveforms were compared with original data. 

A typical example is shown in Fig. 3. On the left of the 
figure, the measured 12-lead ECG is shown. On the right, is 
the 12-lead ECG that would be shown on the monitoring 
display, where the four waveform of V2 though V5 are 
calculated from the measured ECG of lead I, II, V1 and V5. 
The accuracy of derivation in this case is very satisfactory. 
For example, the main features of this case are the ST 
segment depression and T wave abnormality (biphasic T 
wave in the chest leads). These features are reconstructed in 
the derived ECG with good precision. It is very clear that the 
derived ECG waveforms in V2 through V5 are useful in 
assisting diagnosis. 

Another example is shown in Fig. 4. This ECG was 
obtained during a telemetry experiment. In the experiment, 
ECG was recorded in an ambulance with the engine running. 
The recorded ECG was transmitted through mobile internet 
to a remote computer. The computer then calculated the 
derived ECG. This experiment may not necessary for the 
evaluation of the algorithm. But we wanted to check if the 
proposed method was feasible in a practical environment of 
telemonitoring. As shown in Fig. 4, the main differences 
between the measured and derived waveforms are the 
magnitude of T wave in V2 and the QRS pattern in V3. 
Besides, the derived ECG keeps close to the original 
waveforms in general. 

 
DISCUSSION 

 
In addition to arrhythmias, myocardial ischemia and 

infarction are main cases that need continuous monitoring in 
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emergency centers or the ICU. For this purpose, the 12-lead 
ECG is necessary to be monitored in order to provide more 
information of ST segment changes and other ECG features 
for precise diagnosis. Unfortunately, the conventional 
12-lead system is impractical for this purpose. Our proposal 
presented in this paper provides a way to realize continuous 
12-lead ECG monitoring. 

The electrode placement of our method has been proved 
to be convenient for ambulatory and long-term monitoring. 
Although our method uses one more lead than the EASI 
ECG, our method has advantages in the following aspects. 
First, we use a subset of the standard leads. The electrode 
positions are used to most medical professionals. As a result, 
the precise of electrode positioning will generally be good. 
Second and the most important is that our method keeps 
original ECG waveforms of eight leads as the first 
information, and provides four derived waveforms as the 
secondary information to improve the accuracy of diagnosis. 
This feature is a very important advantage as compared to 
the EASI ECG, where only secondary information is 
available. 

As can be seen in the examples shown in Fig. 3 and 4, 
waveforms in the derived ECG are not exactly consistent to 
the originals. In fact, we cannot expect exact matching 
between the derived and the original waveform. Because in 
this study, the lead vectors are obtained from the image 
surface based on the Frank torso model. A single model 
cannot completely fit to all individuals in practice. The 
problem is in what extent the derivation errors are allowed 
for the clinical practice. To answer this problem, we are now 
quantitatively evaluating our data and developing some new 
algorithms to improve the derivation accuracy. Another 
problem that follows is in what way we use the derived ECG.  
At the moment, we think a practical way is to use the 
derived ECG in the sense of computer-add diagnosis. It is no 
doubtable that the 12-lead ECG constructed by eight 
measured leads and four derived leads contains more 
information than that used in current routine ECG monitors 
with a single or a few leads. 

 
CONCLUSION 

 
We propose a lead method and a means to derive 12-lead 

ECG from reduced numbers of electrode for clinical 
monitoring. The electrode placement uses part of the 
standard leads and is convenient for ambulatory and 
long-term bedside monitoring. The algorithm for deriving 
12-lead ECG has necessary degree of accuracy to monitor 
ST segment changes. Possible applications of this method 
are ambulatory monitor in emergency treatment, bedside 
monitoring, telemedicine and the Holter ECG. 
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Fig. 3. An example of measured and derived ECGs. The left is the measured 12-lead ECG using the M-L leads. The 
waveforms in the box on the right are derived from I, II, V1 and V5 of measured ECG. In each figure, the waveforms 
on the left side are I, II, III, aVR, aVL, and aVF. On the right side, are V1 though V6.   

Fig. 4. Another example of measured and derived ECGs. The left is the measured 12-lead ECG using the M-L leads. The 
waveforms in the box on the right are derived from I, II, V1 and V5 of measured ECG In each figure, the waveforms 
on the left side are I, II, III, aVR, aVL, and aVF. On the right side, are V1 though V6. 
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